Angles of random simplices and face numbers of random polytopes
نویسندگان
چکیده
Pick d+1 points uniformly at random on the unit sphere in Rd. What is expected value of angle sum simplex spanned by these points? Choose n d-dimensional ball. number faces their convex hull? We answer and some other, seemingly unrelated, questions stochastic geometry. To this end, we compute internal angles simplices whose vertices are independent sampled from one following distributions: (i) beta distribution with density proportional to (1−‖x‖2)β, where x belongs ball Rd; (ii) beta' (1+‖x‖2)−β whole These results imply explicit formulae for face numbers polytopes: (a) typical Poisson-Voronoi cell; (b) zero cell Poisson hyperplane tessellation; (c) polytopes defined as hulls i.i.d. samples corresponding distributions.
منابع مشابه
Laws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملWiener numbers of random pentagonal chains
The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.
متن کاملEmpty Simplices of Polytopes and Graded Betti Numbers
Abstract. The conjecture of Kalai, Kleinschmidt, and Lee on the number of empty simplices of a simplicial polytope is established by relating it to the first graded Betti numbers of the polytope. The proof allows us to derive explicit optimal bounds on the number of empty simplices of any given dimension. As a key result, we prove optimal bounds for the graded Betti numbers of any standard grad...
متن کاملRandom polytopes
We prove the central limit theorem for the volume and the f -vector of the random polytope Pn and the Poisson random polytope Πn in a fixed convex polytope P ⊂ IR. Here Pn is the convex hull of n random points in P , and Πn is the convex hull of the intersection of a Poisson process X(n), of intensity n, with P . A general lower bound on the variance is also proved. ∗Supported by Hungarian Nati...
متن کامل17 Face Numbers of Polytopes and Complexes
Geometric objects are often put together from simple pieces according to certain combinatorial rules. As such, they can be described as complexes with their constituent cells, which are usually polytopes and often simplices. Many constraints of a combinatorial and topological nature govern the incidence structure of cell complexes and are therefore relevant in the analysis of geometric objects....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107612